segunda-feira, 10 de fevereiro de 2014

Triângulo Retângulo

 




O filósofo e matemático grego Pitágoras, por volta do século VIa.C., fundou uma escola mística secreta, chamada Escola Pitagórica. Nela, a ciência era considerada um bem comum e todos pesquisavam e discutiam coletivamente. Por isso, as contribuições científicas conquistadas não possuíam autoria individual.

Para a formação desse famoso teorema, é possível que Pitágoras e seus discípulos tenham se baseado nos conhecimentos geométricos dos egípcios e em mosaicos que apareciam com frequência em paredes das construções do Egito antigo.

Em verdade, pesquisas indicam muito provavelmente, já havia conhecimento de que em um triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma do quadrado das medidas dos catetos. o Plimpton 322, tablete de argila encontrado na Babilônia, contém sequências de números correspondentes às "ternas pitagóricas", muito antes de Cristo.  



Supomos o leitor familiarizado com as noções de espaço vetorial real e de produto interno.
O objetivo desta postagem é apresentar uma versão do Teorema de Pitágoras do ponto de vista da álgebra linear, de acordo com a qual, em todo espaço vetorial real com produto interno, vale uma fórmula análoga àquela bem conhecida da geometria (a2=b2+c2).
Por certo, nesta generalização as interpretações geométricas desaparecem; nela se estendem as noções de perpendicularidade e comprimento falando-se, então, em ortogonalidade e norma - conceitos estes cujas definições serão necessárias e que, portanto, relembramos a seguir.

Nenhum comentário:

Postar um comentário